Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 14(1): 10907, 2024 05 13.
Artículo en Inglés | MEDLINE | ID: mdl-38740808

RESUMEN

In this study, we investigated the electrical brain responses in a high-density EEG array (64 electrodes) elicited specifically by the word memory cue in the Think/No-Think paradigm in 46 participants. In a first step, we corroborated previous findings demonstrating sustained and reduced brain electrical frontal and parietal late potentials elicited by memory cues following the No-Think (NT) instructions as compared to the Think (T) instructions. The topographical analysis revealed that such reduction was significant 1000 ms after memory cue onset and that it was long-lasting for 1000 ms. In a second step, we estimated the underlying brain generators with a distributed method (swLORETA) which does not preconceive any localization in the gray matter. This method revealed that the cognitive process related to the inhibition of memory retrieval involved classical motoric cerebral structures with the left primary motor cortex (M1, BA4), thalamus, and premotor cortex (BA6). Also, the right frontal-polar cortex was involved in the T condition which we interpreted as an indication of its role in the maintaining of a cognitive set during remembering, by the selection of one cognitive mode of processing, Think, over the other, No-Think, across extended periods of time, as it might be necessary for the successful execution of the Think/No-Think task.


Asunto(s)
Electroencefalografía , Memoria , Corteza Motora , Humanos , Masculino , Femenino , Adulto , Memoria/fisiología , Corteza Motora/fisiología , Adulto Joven , Mapeo Encefálico , Pensamiento/fisiología , Encéfalo/fisiología , Potenciales Evocados/fisiología
2.
Front Neurosci ; 18: 1329411, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38737097

RESUMEN

Myoelectric prostheses have recently shown significant promise for restoring hand function in individuals with upper limb loss or deficiencies, driven by advances in machine learning and increasingly accessible bioelectrical signal acquisition devices. Here, we first introduce and validate a novel experimental paradigm using a virtual reality headset equipped with hand-tracking capabilities to facilitate the recordings of synchronized EMG signals and hand pose estimation. Using both the phasic and tonic EMG components of data acquired through the proposed paradigm, we compare hand gesture classification pipelines based on standard signal processing features, convolutional neural networks, and covariance matrices with Riemannian geometry computed from raw or xDAWN-filtered EMG signals. We demonstrate the performance of the latter for gesture classification using EMG signals. We further hypothesize that introducing physiological knowledge in machine learning models will enhance their performances, leading to better myoelectric prosthesis control. We demonstrate the potential of this approach by using the neurophysiological integration of the "move command" to better separate the phasic and tonic components of the EMG signals, significantly improving the performance of sustained posture recognition. These results pave the way for the development of new cutting-edge machine learning techniques, likely refined by neurophysiology, that will further improve the decoding of real-time natural gestures and, ultimately, the control of myoelectric prostheses.

3.
Front Psychol ; 14: 1199448, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37583601

RESUMEN

Objective: To investigate kinematic and muscle activity differences during the sleep-push movement in elite field hockey players. We hypothesized that players with specialized sleep-push movement training (specialists) would possess a lower center of mass (CoM) and enhanced reproducibility of muscle activations during the movement, compared to players without explicit movement training (non-specialists). Methods: Ten field hockey players of the Belgian national field hockey team performed the sleep-push movement (5 specialists and 5 non-specialists). Muscle activity and kinematic data were recorded using EMG to evaluate the reproducibility of muscle activations by cross-correlation analysis and power spectral features across the movement, while a motion capture system was used to assess kinematics. Results: Compared to non-specialists, specialists had significantly (p < 0.05) increased stick velocity (9.17 ± 1.28 m/s versus 6.98 ± 0.97 m/s) and lower CoM height (141 ± 52 mm versus 296 ± 64 mm), during the second part of the shot. Specialists also showed a significant (p < 0.05) lower power spectrum in the activity of the upper limb muscles before the shot. Superimposition of the auto crosscorrelation results demonstrated a high degree of reproducibility in specialists' muscle activations. Conclusion: Sleep-push movements realized by elite players who are specialists in the sleep-push movement presented significant kinematics and muscular activation differences when compared to the sleep-push movements realized by elite players who were not specialists in such movement. Characterization of the specific movement and the related high-level performer's muscular strategies offers the possibility of translating sport science findings into functional training with concrete applications for coaches, players, and other key stakeholders for the continued development of the field.

5.
Sci Rep ; 13(1): 9489, 2023 06 11.
Artículo en Inglés | MEDLINE | ID: mdl-37303002

RESUMEN

Electroencephalography (EEG) can detect changes in cerebral activity during spaceflight. This study evaluates the effect of spaceflight on brain networks through analysis of the Default Mode Network (DMN)'s alpha frequency band power and functional connectivity (FC), and the persistence of these changes. Five astronauts' resting state EEGs under three conditions were analyzed (pre-flight, in-flight, and post-flight). DMN's alpha band power and FC were computed using eLORETA and phase-locking value. Eyes-opened (EO) and eyes-closed (EC) conditions were differentiated. We found a DMN alpha band power reduction during in-flight (EC: p < 0.001; EO: p < 0.05) and post-flight (EC: p < 0.001; EO: p < 0.01) when compared to pre-flight condition. FC strength decreased during in-flight (EC: p < 0.01; EO: p < 0.01) and post-flight (EC: ns; EO: p < 0.01) compared to pre-flight condition. The DMN alpha band power and FC strength reduction persisted until 20 days after landing. Spaceflight caused electrocerebral alterations that persisted after return to earth. Periodic assessment by EEG-derived DMN analysis has the potential to become a neurophysiologic marker of cerebral functional integrity during exploration missions to space.


Asunto(s)
Vuelo Espacial , Humanos , Astronautas , Ojo , Encéfalo , Electroencefalografía
6.
Front Syst Neurosci ; 17: 1180627, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37304152

RESUMEN

The network formed by the brainstem, cerebellum, and hippocampus occupies a central position to achieve navigation. Multiple physiological functions are implicated in this complex behavior. Among these, control of the eye-head and body movements is crucial. The gaze-holding system realized by the brainstem oculomotor neural integrator (ONI) situated in the nucleus prepositus hypoglossi and fine-tuned by the contribution of different regions of the cerebellum assumes the stability of the image on the fovea. This function helps in the recognition of environmental targets and defining appropriate navigational pathways further elaborated by the entorhinal cortex and hippocampus. In this context, an enigmatic brainstem area situated in front of the ONI, the nucleus incertus (NIC), is implicated in the dynamics of brainstem-hippocampus theta oscillation and contains a group of neurons projecting to the cerebellum. These neurons are characterized by burst tonic behavior similar to the burst tonic neurons in the ONI that convey eye velocity-position signals to the cerebellar flocculus. Faced with these forgotten cerebellar projections of the NIC, the present perspective discusses the possibility that, in addition to the already described pathways linking the cerebellum and the hippocampus via the medial septum, these NIC signals related to the vestibulo-ocular reflex and gaze holding could participate in the hippocampal control of navigation.

7.
Brain Sci ; 12(8)2022 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-36009081

RESUMEN

The interaction between oral and/or mental cognitive tasks and postural control and mobility remains unclear. The aim of this study was to analyse the influence of speech production and cognitive load levels on static balance and timed up and go (TUG) during dual-task activities. Thirty healthy young subjects (25 ± 4 years old, 17 women) participated in this study. A control situation and two different cognitive arithmetic tasks were tested: counting backward in increments of 3 and 7 under oral (O) and mental (M) conditions during static balance and the TUG. We evaluated the dual-task cost (DTC) and the effect of speech production (SP) and the level of cognitive load (CL) on these variables. There was a significant increase in the centre of pressure oscillation velocity in static balance when the dual task was performed orally compared to the control situation The DTC was more pronounced for the O than for the M. The SP, but not the CL, had a significant effect on oscillation velocity. There was an increase in TUG associated with the cognitive load, but the mental or oral aspect did not seem to have an influence. Mobility is more affected by SP when the cognitive task is complex. This may be particularly important for the choice of the test and understanding postural control disorders.

8.
Front Psychol ; 13: 792872, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35310269

RESUMEN

The search for the best wellness practice has promoted the development of devices integrating different technologies and guided meditation. However, the final effects on the electrical activity of the brain remain relatively sparse. Here, we have analyzed of the alpha and theta electroencephalographic oscillations during the realization of the arrest reaction (AR; eyes close/eyes open transition) when a chromotherapy session performed in a dedicated room [Rebalance (RB) device], with an ergonomic bed integrating pulsed-wave light (PWL) stimulation, guided breathing, and body scan exercises. We demonstrated that the PWL induced an evoked-related potential characterized by the N2-P3 components maximally recorded on the fronto-central areas and accompanied by an event-related synchronization (ERS) of the delta-theta-alpha oscillations. The power of the alpha and theta oscillations was analyzed during repeated ARs testing realized along with the whole RB session. We showed that the power of the alpha and theta oscillations was significantly increased during the session in comparison to their values recorded before. Of the 14 participants, 11 and 6 showed a significant power increase of the alpha and theta oscillations, respectively. These increased powers were not observed in two different control groups (n = 28) who stayed passively outside or inside the RB room but without any type of stimulation. These preliminary results suggest that PWL chromotherapy and guided relaxation induce measurable electrical brain changes that could be beneficial under neuropsychiatric perspectives.

9.
PLoS One ; 17(1): e0262417, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35030232

RESUMEN

OBJECTIVE: Different visual stimuli are classically used for triggering visual evoked potentials comprising well-defined components linked to the content of the displayed image. These evoked components result from the average of ongoing EEG signals in which additive and oscillatory mechanisms contribute to the component morphology. The evoked related potentials often resulted from a mixed situation (power variation and phase-locking) making basic and clinical interpretations difficult. Besides, the grand average methodology produced artificial constructs that do not reflect individual peculiarities. This motivated new approaches based on single-trial analysis as recently used in the brain-computer interface field. APPROACH: We hypothesize that EEG signals may include specific information about the visual features of the displayed image and that such distinctive traits can be identified by state-of-the-art classification algorithms based on Riemannian geometry. The same classification algorithms are also applied to the dipole sources estimated by sLORETA. MAIN RESULTS AND SIGNIFICANCE: We show that our classification pipeline can effectively discriminate between the display of different visual items (Checkerboard versus 3D navigational image) in single EEG trials throughout multiple subjects. The present methodology reaches a single-trial classification accuracy of about 84% and 93% for inter-subject and intra-subject classification respectively using surface EEG. Interestingly, we note that the classification algorithms trained on sLORETA sources estimation fail to generalize among multiple subjects (63%), which may be due to either the average head model used by sLORETA or the subsequent spatial filtering failing to extract discriminative information, but reach an intra-subject classification accuracy of 82%.


Asunto(s)
Electroencefalografía/métodos , Potenciales Evocados Visuales/fisiología , Procesamiento de Imagen Asistido por Computador/métodos , Adulto , Algoritmos , Interfaces Cerebro-Computador , Femenino , Voluntarios Sanos , Humanos , Masculino , Procesamiento de Señales Asistido por Computador , Percepción Visual/fisiología
10.
Clin Respir J ; 15(3): 351-357, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33217122

RESUMEN

INTRODUCTION: Patients with chronic obstructive pulmonary disease (COPD) may demonstrate cognitive function and balance deterioration. These two phenomena are often realized simultaneously during daily living activities, where the risk of falling may be increased due to possible postural disturbance when focusing on a cognitive task during motion. Despite the high rate of falls in COPD, there is currently a lack of affordable clinical instruments to quantify the interaction between cognitive tasks and static balance in these patients. Therefore, this study aims to assess the balance perturbation induced by cognitive tasks using a new cost-effective protocol which can easily be implemented in clinical settings. METHOD: A total of 21 COPD patients (Age: 64 ± 8 yrs, Forced Expiratory Volume in one second = 41 ± 17%, Women: 7) and 21 matched healthy controls participated in the study. They performed two cognitive tasks (counting backward by 3s and naming animals) with eyes open and with eyes closed. Each trial lasted 60 s, with balance-related parameters recorded and quantified using a Wii Balance Board. A three-way ANOVA (cognitive task, eyes action, and health status) for balance-related parameters derived from the center of pressure displacement was performed. RESULTS: COPD, vision, and cognitive tasks altered the balance; no interaction between conditions was observed. There was no correlation between cognitive ability, respiratory function, and the balance-related parameters. CONCLUSION: Compared to healthy controls, the COPD patients had impaired balance. Cognitive tasks altered postural control in both COPD and controls, where this alteration was more pronounced with eyes closed.


Asunto(s)
Equilibrio Postural , Enfermedad Pulmonar Obstructiva Crónica , Actividades Cotidianas , Anciano , Anciano de 80 o más Años , Estudios de Casos y Controles , Cognición , Femenino , Volumen Espiratorio Forzado , Humanos , Masculino , Persona de Mediana Edad
11.
Eur J Neurosci ; 53(4): 1207-1224, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33169431

RESUMEN

Event-related potentials (ERP) studies report alterations in the ongoing visuo-attentional processes in children with attention-deficit/hyperactivity disorder (ADHD). We hypothesized that the neural generators progressively recruited after a cue stimulus imply executive-related areas well before engagement in executive processing in children with ADHD compared to typically developed children (TDC). We computed source localization (swLORETA) of the ERP and ERSP evoked by the Cue stimulus during a visual Cue-Go/Nogo paradigm in 15 ADHD compared to 16 TDC. A significant difference in N200/P200 amplitude over the right centro-frontal regions was observed between ADHD and TDC, supported by a stronger contribution of the left visuo-motor coordination area, premotor cortex, and prefrontal cortex in ADHD. In addition, we recorded a greater beta power spectrum in ADHD during the 80-230 ms interval, which was explained by increased activity in occipito-parieto-central areas and lower activity in the left supramarginal gyrus and prefrontal areas in ADHD. Successive analysis of the ERP generators (0-500 ms with successive periods of 50 ms) revealed significant differences beginning at 50 ms, with higher activity in the ventral anterior cingulate cortex, premotor cortex, and fusiform gyrus, and ending at 400-500 ms with higher activity of the dorsolateral prefrontal cortex and lower activity of the posterior cingulate cortex in ADHD compared to TDC. The areas contributing to ERP in ADHD and TDC differ from the early steps of visuo-attentional processing and reveal an overinvestment of the executive networks interfering with the activity of the dorsal attention network in children with ADHD.


Asunto(s)
Trastorno por Déficit de Atención con Hiperactividad , Niño , Cognición , Señales (Psicología) , Potenciales Evocados , Humanos , Percepción Visual
12.
Front Neurosci ; 14: 588357, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33424535

RESUMEN

Interactions between two brains constitute the essence of social communication. Daily movements are commonly executed during social interactions and are determined by different mental states that may express different positive or negative behavioral intent. In this context, the effective recognition of festive or violent intent before the action execution remains crucial for survival. Here, we hypothesize that the EEG signals contain the distinctive features characterizing movement intent already expressed before movement execution and that such distinctive information can be identified by state-of-the-art classification algorithms based on Riemannian geometry. We demonstrated for the first time that a classifier based on covariance matrices and Riemannian geometry can effectively discriminate between neutral, festive, and violent mental states only on the basis of non-invasive EEG signals in both the actor and observer participants. These results pave the way for new electrophysiological discrimination of mental states based on non-invasive EEG recordings and cutting-edge machine learning techniques.

14.
NPJ Microgravity ; 5: 10, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31069253

RESUMEN

Adequate sleep quantity and quality is required to maintain vigilance, cognitive and learning processes. A decrease of sleep quantity preflight and on the International Space Station (ISS) has been reported. Recent counter-measures have been implemented to better regulate sleep opportunities on ISS. In our study, astronauts were allocated enough time for sleep the night before the recordings. However, for proper sleep recovery, the quality of sleep is also critical. Unfortunately, data on sleep quality have yet to be acquired from the ISS. Here, we investigate sleep pressure markers during wakefulness in five astronauts throughout their 6-month space mission by the mean of electroencephalographic recordings. We show a global increase of theta oscillations (5-7 Hz) on the ISS compared to on Earth before the mission. We also show that local sleep-like events, another marker of sleep pressure, are more global in space (p < 0.001). By analysing the performances of the astronauts during a docking simulation, we found that local sleep-like events are more global when reaction times are slower (R 2 = 0.03, p = 0.006) and there is an increase of reaction times above 244 ms after 2 months in space (p = 0.012). Our analyses provide first evidence for increased sleep pressure in space and raise awareness on possible impacts on visuomotor performances in space.

15.
PLoS One ; 12(6): e0178817, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28632774

RESUMEN

The ecological environment offered by virtual reality is primarily supported by visual information. The different image contents and their rhythmic presentation imply specific bottom-up and top-down processing. Because these processes already occur during passive observation we studied the brain responses evoked by the presentation of specific 3D virtual tunnels with respect to 2D checkerboard. For this, we characterized electroencephalograhy dynamics (EEG), the evoked potentials and related neural generators involved in various visual paradigms. Time-frequency analysis showed modulation of alpha-beta oscillations indicating the presence of stronger prediction and after-effects of the 3D-tunnel with respect to the checkerboard. Whatever the presented image, the generators of the P100 were situated bilaterally in the occipital cortex (BA18, BA19) and in the right inferior temporal cortex (BA20). In checkerboard but not 3D-tunnel presentation, the left fusiform gyrus (BA37) was additionally recruited. P200 generators were situated in the temporal cortex (BA21) and the cerebellum (lobule VI/Crus I) specifically for the checkerboard while the right parahippocampal gyrus (BA36) and the cerebellum (lobule IV/V and IX/X) were involved only during the 3D-tunnel presentation. For both type of image, P300 generators were localized in BA37 but also in BA19, the right BA21 and the cerebellar lobule VI for only the checkerboard and the left BA20-BA21 for only the 3D-tunnel. Stronger P300 delta-theta oscillations recorded in this later situation point to a prevalence of the effect of changing direction over the proper visual content of the 3D-tunnel. The parahippocampal gyrus (BA36) implicated in navigation was also identified when the 3D-tunnel was compared to their scrambled versions, highlighting an action-oriented effect linked to navigational content.


Asunto(s)
Mapeo Encefálico/métodos , Encéfalo/fisiología , Electroencefalografía/métodos , Potenciales Evocados/fisiología , Procesamiento de Imagen Asistido por Computador/métodos , Adulto , Femenino , Lateralidad Funcional , Humanos , Masculino , Adulto Joven
16.
Front Psychol ; 8: 2133, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29312028

RESUMEN

In order to characterize the neural generators of the brain oscillations related to motor imagery (MI), we investigated the cortical, subcortical, and cerebellar localizations of their respective electroencephalogram (EEG) spectral power and phase locking modulations. The MI task consisted in throwing a ball with the dominant upper limb while in a standing posture, within an ecological virtual reality (VR) environment (tennis court). The MI was triggered by the visual cues common to the control condition, during which the participant remained mentally passive. As previously developed, our paradigm considers the confounding problem that the reference condition allows two complementary analyses: one which uses the baseline before the occurrence of the visual cues in the MI and control resting conditions respectively; and the other which compares the analog periods between the MI and the control resting-state conditions. We demonstrate that MI activates specific, complex brain networks for the power and phase modulations of the EEG oscillations. An early (225 ms) delta phase-locking related to MI was generated in the thalamus and cerebellum and was followed (480 ms) by phase-locking in theta and alpha oscillations, generated in specific cortical areas and the cerebellum. Phase-locking preceded the power modulations (mainly alpha-beta ERD), whose cortical generators were situated in the frontal BA45, BA11, BA10, central BA6, lateral BA13, and posterior cortex BA2. Cerebellar-thalamic involvement through phase-locking is discussed as an underlying mechanism for recruiting at later stages the cortical areas involved in a cognitive role during MI.

17.
PLoS One ; 9(1): e82371, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24400069

RESUMEN

Visual perception is not only based on incoming visual signals but also on information about a multimodal reference frame that incorporates vestibulo-proprioceptive input and motor signals. In addition, top-down modulation of visual processing has previously been demonstrated during cognitive operations including selective attention and working memory tasks. In the absence of a stable gravitational reference, the updating of salient stimuli becomes crucial for successful visuo-spatial behavior by humans in weightlessness. Here we found that visually-evoked potentials triggered by the image of a tunnel just prior to an impending 3D movement in a virtual navigation task were altered in weightlessness aboard the International Space Station, while those evoked by a classical 2D-checkerboard were not. Specifically, the analysis of event-related spectral perturbations and inter-trial phase coherency of these EEG signals recorded in the frontal and occipital areas showed that phase-locking of theta-alpha oscillations was suppressed in weightlessness, but only for the 3D tunnel image. Moreover, analysis of the phase of the coherency demonstrated the existence on Earth of a directional flux in the EEG signals from the frontal to the occipital areas mediating a top-down modulation during the presentation of the image of the 3D tunnel. In weightlessness, this fronto-occipital, top-down control was transformed into a diverging flux from the central areas toward the frontal and occipital areas. These results demonstrate that gravity-related sensory inputs modulate primary visual areas depending on the affordances of the visual scene.


Asunto(s)
Gravitación , Percepción Visual/fisiología , Adulto , Encéfalo/fisiología , Ondas Encefálicas , Electroencefalografía , Potenciales Evocados Visuales , Humanos , Masculino , Persona de Mediana Edad , Estimulación Luminosa
18.
Front Comput Neurosci ; 8: 169, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25620928

RESUMEN

A central question in Neuroscience is that of how the nervous system generates the spatiotemporal commands needed to realize complex gestures, such as handwriting. A key postulate is that the central nervous system (CNS) builds up complex movements from a set of simpler motor primitives or control modules. In this study we examined the control modules underlying the generation of muscle activations when performing different types of movement: discrete, point-to-point movements in eight different directions and continuous figure-eight movements in both the normal, upright orientation and rotated 90°. To test for the effects of biomechanical constraints, movements were performed in the frontal-parallel or sagittal planes, corresponding to two different nominal flexion/abduction postures of the shoulder. In all cases we measured limb kinematics and surface electromyographic activity (EMG) signals for seven different muscles acting around the shoulder. We first performed principal component analysis (PCA) of the EMG signals on a movement-by-movement basis. We found a surprisingly consistent pattern of muscle groupings across movement types and movement planes, although we could detect systematic differences between the PCs derived from movements performed in each shoulder posture and between the principal components associated with the different orientations of the figure. Unexpectedly we found no systematic differences between the figure eights and the point-to-point movements. The first three principal components could be associated with a general co-contraction of all seven muscles plus two patterns of reciprocal activation. From these results, we surmise that both "discrete-rhythmic movements" such as the figure eight, and discrete point-to-point movement may be constructed from three different fundamental modules, one regulating the impedance of the limb over the time span of the movement and two others operating to generate movement, one aligned with the vertical and the other aligned with the horizontal.

19.
Artículo en Inglés | MEDLINE | ID: mdl-23755009

RESUMEN

The existence of dedicated neuronal modules such as those organized in the cerebral cortex, thalamus, basal ganglia, cerebellum, or spinal cord raises the question of how these functional modules are coordinated for appropriate motor behavior. Study of human locomotion offers an interesting field for addressing this central question. The coordination of the elevation of the 3 leg segments under a planar covariation rule (Borghese et al., 1996) was recently modeled (Barliya et al., 2009) by phase-adjusted simple oscillators shedding new light on the understanding of the central pattern generator (CPG) processing relevant oscillation signals. We describe the use of a dynamic recurrent neural network (DRNN) mimicking the natural oscillatory behavior of human locomotion for reproducing the planar covariation rule in both legs at different walking speeds. Neural network learning was based on sinusoid signals integrating frequency and amplitude features of the first three harmonics of the sagittal elevation angles of the thigh, shank, and foot of each lower limb. We verified the biological plausibility of the neural networks. Best results were obtained with oscillations extracted from the first three harmonics in comparison to oscillations outside the harmonic frequency peaks. Physiological replication steadily increased with the number of neuronal units from 1 to 80, where similarity index reached 0.99. Analysis of synaptic weighting showed that the proportion of inhibitory connections consistently increased with the number of neuronal units in the DRNN. This emerging property in the artificial neural networks resonates with recent advances in neurophysiology of inhibitory neurons that are involved in central nervous system oscillatory activities. The main message of this study is that this type of DRNN may offer a useful model of physiological central pattern generator for gaining insights in basic research and developing clinical applications.

20.
Exp Brain Res ; 226(1): 95-106, 2013 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-23397113

RESUMEN

In the present study, we investigated the effect of weightlessness on the ability to perceive and remember self-motion when passing through virtual 3D tunnels that curve in different direction (up, down, left, right). We asked cosmonaut subjects to perform the experiment before, during and after long-duration space flight aboard the International Space Station (ISS), and we manipulated vestibular versus haptic cues by having subjects perform the task either in a rigidly fixed posture with respect to the space station or during free-floating, in weightlessness. Subjects were driven passively at constant speed through the virtual 3D tunnels containing a single turn in the middle of a linear segment, either in pitch or in yaw, in increments of 12.5°. After exiting each tunnel, subjects were asked to report their perception of the turn's angular magnitude by adjusting, with a trackball, the angular bend in a rod symbolizing the outside view of the tunnel. We demonstrate that the strong asymmetry between downward and upward pitch turns observed on Earth showed an immediate and significant reduction when free-floating in weightlessness and a delayed reduction when the cosmonauts were firmly in contact with the floor of the station. These effects of weightlessness on the early processing stages (vestibular and optokinetics) that underlie the perception of self-motion did not stem from a change in alertness or any other uncontrolled factor in the ISS, as evidenced by the fact that weightlessness had no effect on the perception of yaw turns. That the effects on the perception of pitch may be partially overcome by haptic cues reflects the fusion of multisensory cues and top-down influences on visual perception.


Asunto(s)
Astronautas , Percepción de Movimiento/fisiología , Postura/fisiología , Autoimagen , Ingravidez , Adulto , Astronautas/psicología , Femenino , Humanos , Masculino , Persona de Mediana Edad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...